

V Semester B.A./B.Sc. Examination, Nov./Dec. 2015 (Semester Scheme) (2013-14 and Onwards) (NS) MATHEMATICS – V

Time: 3 Hours

Max. Marks: 100

Instruction: Answerall questions.

I. Answer any fifteen questions:

(15×2=30)

- 1) In a vector space V(F) if $c\alpha = c\beta$ and $c \neq 0$ then show that $\alpha = \beta$ where $\alpha, \beta \in V$ and $c \in F$.
- 2) Define subspace of a vector space V(F).
- 3) Show that the set $S = \{(1, 2, 1), (-1, 1, 0), (5, -1, 2)\}$ are linearly independent.
- 4) In a linear transformation T : U \rightarrow V show that $T(-\alpha) = T(\alpha) \forall \alpha \in U$.
- 5) Find the matrix of the linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined by T(x, y) = (x + y, x, 3x y) relative to standard basis.
- 6) Define rank and nullity of linear transformation T : $U \rightarrow V$.
- 7) If \overrightarrow{a} has a constant length then prove that \overrightarrow{a} and $\frac{d\overrightarrow{a}}{dt}$ are perpendicular provided $\left|\frac{d\overrightarrow{a}}{dt}\right| \neq 0$.
- 8) If $\vec{r} = e^{nt} \vec{a} + e^{-nt} \vec{b}$ where \vec{a} and \vec{b} are constant vectors, then show that $\frac{d^2\vec{r}}{dt^2} n^2\vec{r} = \vec{o}$.
- 9) Find the unit tangent vector \hat{t} at t = 0 on the space curve x = 3t, $y = 3t^2$ and $z = 2t^3$.
- 10) Show that the necessary condition for a curve in space to be a straight line is that curvature K = 0 at all points.

- The Cartesian coordinates of a point are (2, −2, 4). Find the corresponding cylindrical coordinates.
- 12) If $\phi = x^3 + y^3 + xz^2$ find $|\nabla \phi|$ at the point (1, -1, 2).
- 13) Show that $\overrightarrow{F} = (x + 3y)\hat{i} + (y 3z)\hat{j} + (x 2z)\hat{k}$ is solenoidal.
- 14) Find $\nabla^2 \phi$, where $\phi = xy + yz + zx$.
- 15) Prove that curl (grad ϕ) = 0.
- 16) If $\overrightarrow{F} = x^2y\hat{i} 2xz\hat{j} + 2yz\hat{k}$ find curl \overrightarrow{F} .
- 17) Define the complex Fourier transform and the inverse complex Fourier transform of a function f(x).
- 18) With the usual notations of Fourier transform prove that F[af(x) + bg(x)] = aF(f(x)) + bF(g(x))
- 19) If a is any real constant and $F_s[f(x)] = \hat{f}_s(\alpha)$ then prove that $F_s[f(ax)] = \frac{1}{a} \hat{f}_s(\frac{\alpha}{a})$.
- 20) If $\hat{f}(\alpha)$ is the Fourier transform of the function f(x). Then prove that $F[f'(x)] = -i\alpha \hat{f}(\alpha)$.

II. Answer any four of the following:

(4×5=20)

- Prove that a non-empty subset W of a vector space V(F) is a subspace of V if and only if.
 - i) $\forall \alpha, \beta \in W \Rightarrow \alpha + \beta \in W$
 - ii) $a \in F$, $\alpha \in W \Rightarrow a\alpha \in W$.
- 2) Express the vector (3, 5, 2) as a linear combination of the vectors {(1, 1, 0), (2, 3, 0), (0, 0, 1)} of V₃(R).
- 3) Find the dimension and basis of the subspace spanned by the vectors $\{(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 2, 1)\}$ of $V_3(R)$.

- 4) Find the linear transformation T: $R^2 \rightarrow R^3$ such that T(1, 1) = (0, 1, 2) and T(-1, 1) = (2, 1, 0).
- 5) Verify Rank-nullity theorem for the transformation $T: R^3 \to R^3$ defined by $T(e_1) = e_1 e_2$; $T(e_2) = 2e_1 + e_3$; $T(e_3) = e_1 + e_2 + e_3$.
- 6) Let T: U \rightarrow V be a linear transformation, prove that if the vectors $\alpha_1, \alpha_2,, \alpha_n$ generates U then the vectors $T(\alpha_1), T(\alpha_2),, T(\alpha_n)$ generates R(T).

III. Answer any four of the following:

(4×5=20)

- 1) For the space curve $x = a \cos t$, $y = a \sin t$, $z = b t \sin t$ that $\kappa = \frac{a}{a^2 + b^2}$ and $\tau = \frac{a}{a^2 + b^2}$.
- 2) State and prove Serret-Frenet formulae.
- 3) Find the angle between the unit tangent vectors drawn to the curve $x = t^2$, y = 2t, $z = -t^3$ at the points t = 1 and t = -1.
- 4) Find the equation of the tangent plane and normal line to the surface $x^2 + y^2 + z^2 25 = 0$ at the point (4, 0, 3).
- 5) Show that the surface $5x^2 2yz = 9x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at (1, -1, 2).
- 6) Express the vector $\vec{f} = 2y\hat{i} z\hat{j} + 3x\hat{k}$ in terms of cylindrical co-ordinates.

IV. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) Find the directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1, 1, -1) in the direction of $2\hat{i} + \hat{j} \hat{k}$.
- 2) Show that div $(\phi \overrightarrow{F}) = \phi(\text{div }\overrightarrow{F}) + \overrightarrow{F} \cdot (\text{grad } \phi)$.
- 3) Show that $\overrightarrow{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find ϕ such that $\overrightarrow{F} = \nabla \phi$.
- 4) If $\overrightarrow{F} = 2x\hat{i} + 3y\hat{j} + 4z\hat{k}$ and $\phi = xy^2z^3$, find $\overrightarrow{F} \cdot \nabla \phi$ and $\nabla |\overrightarrow{F}|^2$.
- 5) Show that $\nabla \cdot \left[r \nabla \left(\frac{1}{r^3} \right) \right] = \frac{3}{r^4}$ where $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$.

V. Answer any three of the following:

(3×5=15)

- 1) Express $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ as a Fourier integral.
- 2) Find the Fourier transform of $f(x) = e^{-|x|}$.
- 3) Find the Fourier cosine transform of the function $f(x) = \begin{cases} 1+x & \text{for } 0 < x < 1 \\ 0 & \text{for } x > 1 \end{cases}$
- 4) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$, a > 0.
- 5) Prove that:

i) $F_s[f'(x)] = -\alpha F_c[f'(x)]$

ii) $F_c[f'(x)] = -\sqrt{\frac{2}{\pi}} f(0) + \alpha F_s[f(x)].$

BMSCW

in the direction of 2, and a